Why Patent Searchers (And Others) Need

T

When They Already Have A Word Processor;
Or, Post-Processing At The Power Level

by Sandra Unger, Ph.D.
Staff Chemist

Exxon Research and Engineering

have frequently been asked why I use KEDIT to
edit downloaded patent abstracts instead of the
powerful new word processors. Editors, such as
KEDIT, and word processors are different types of
tools that were developed to meet different sets of
requirements. Word processors excel at creating
well-formatted documents. KEDIT more or less
ignores the format of the text, and instead provides
powerful tools for manipulating the text itself. To
demonstrate the power of KEDIT as well as the
limitations of word processors, a macro will be
examined that modifies downloaded records to
meet the requirements of certain personal data-
bases. The sample macro will delete the type of
extra information that ORBIT has recently added
to Derwent patent equivalents. The requirement is
to delete selectively, an unknown string of text from
an unknown number of patent equivalents in an
unknown number of patent records. It would be
extremely difficult simply to record a word proces-
sor keystroke macro that could deal with this level
of uncertainty. I will show that the combination of
KEDIT and a modern word processor is much more
powerful than using either tool alone.

PROGRAM DIFFERENCES

Editors and word processors are
different types of tools that were
developed to meet different sets of
requirements. Editors, such as
KEDIT, were originally developed to
meet the needs of computer program-
mers in writing source code. Word
processors were developed to meet
the needs of writers and secretaries
in producing well-formatted docu-
ments. As these tools developed, they
became more and more sophisticated
and now often include a macro lan-
guage that allows repetitious tasks
to be automated. KEDIT excels at
tasks that involve the modification of
variable length blocks of text based
on position, or other sophisticated
methods of recognition. Word proces-
sors excel at tasks that involve the
formatting of existing text into well-
formed documents.

The most obvious difference between
editors and word processors is the
type of files they manipulate. Editors
generally operate on ASCII files.
This is again due to the historical use
of editors by programmers. The pro-
grammers plan to send their source
code to a compiler and do not want
any formatting getting between them

-

1994 August DATABASE 63

of recognition.

and the compiler. A word processor,
on the other hand, contains enor-
mous amounts of formatting stored in
each and every document. For exam-
ple, a simple ASCII file containing
the word “hello” may occupy 7 bytes.
A corresponding word processor doc-
ument containing the word “hello”
may be nearly 2,000 bytes. Most of
the size difference is due to the for-
matting that the word processor
stores to make the
document print in the
desired font and with
the desired headings
and using the desired
template.

There are many
other more subtle dif-
ferences. To illus-
trate some differences
between an editor and
a word processor, I will
consider the problem of
deleting unwanted text
from the patent num-
ber field of a Derwent
patent record. For example, ORBIT
recently began adding the number of
pages, the language, and the patent
classification to each equivalent in a
Derwent patent family (Figure 1).
While this type of additional data may
prove valuable for certain types of eval-
uations, it is undesirable when build-
ing a personal database. Manually
deleting this extra information from a
hundred records could be an extremely
tedious process. Automating this task
in a word processor would prove to be
difficult. However in an editor such as
KEDIT, it is easy to write a macro that
identifies the unwanted text and then
deletes it.

This task is difficult to automate
for several reasons. First, the text to
be deleted is not defined by a simple
string of letters. Secondly, the text
to be deleted exists on several dif-
ferent lines. Thirdly, and perhaps

KA NATARATE > 100

EDIT excels at tasks that involve the
modification of variable length blocks of text

based on position, or other sophisticated methods

most importantly, your macro must
not mistakenly delete any informa-
tion in any other field. Here the task
is to delete selectively, an unknown
string of text from an unknown num-
ber of equivalents in an unknown
number of patent records. That is a
lot of uncertainty to deal with. The
only selection criterion is the posi-
tion of the text within each patent
record. If you are accustomed to

ere the task is to delete selectively, an
unknown string of text from an unknown
number of equivalents in an unknown

number of patent records. That is a lot of

uncertainty to deal with.

automating procedures by recording
keystrokes in a word processor, this
might seem an impossible task.
However, by using the KEXX macro
language that comes with KEDIT 1
was able to automate this proce-
dure easily.

To design this macro, first consider
the sequence of steps that would be
needed to delete manually the added
information from a single patent
record. First, you would need to iden-
tify those lines of text that constitute
the patent number field. Next, you
would need to identify the block of
text that constitutes the extra infor-
mation that has been added to each
patent equivalent. Finally, you would
need to move your cursor to the cor-
rect column and line and delete all
the text to the right of this position.
This last step would need to be
repeated for each equivalent contain-
ing this added information.

This is a much more sophisticated
task than simply changing misspelled
words. Here, we do not know what
text will be added to each patent. Any
number of pages, language or patent
classification could
be added to each
equivalent. The text
we want to delete is
not defined by a
string of characters.
Instead, the text we
want to delete is
defined by its posi-
tion within a record.

To automate this
procedure, the soft-
ware tool must be
able to identify the
patent number field
first by identifying
the “PN -” field-tag and secondly, by
recognizing that the patent number
field extends across many lines of text.
until a new field-tag is reached. For
each line of text in this field, any text
in columns 27 to 80 should be de}eted.
We need a software tool that can:

FIGURE 1
Derwent Patent Record

(-- other fields --)

PN -~ USS084197-A
EP-482759-A
N09103691-A
AU9184567-A
CA2051495-A
FI9104430-A

(-- other fields --)

92.01.28 (9207)
92.04.29 (9218) 21p E
92.03.23 (9221)
92.03.26 (9222)
92.03.22 (9223)
92.03.22 (9225)

patent class
language

pages! !
I

P e e
N\ o e o e o e

I
)
H
il
AVARRVS

C10M

C1eM-145/32
CloM-145/32
C1oM-145/32

D uniquely identify the field tag,

2)operate within the block of text
that defines the patent number
field,

3)manipulate the text that lies
within a certain range of columns.

There are several unique features
that make KEDIT the correct tool for
this type of sophisticated editing. I
will first describe in a general way
why each of these features is impor-
tant in designing the macro, and then
describe how each feature differs
from that found in a word processor.
As one side note, many word proces-
sors include sophisticated macro lan-
guages, however it would probably be
necessary to simulate versions of the
following features that are missing
from many word processors. The fol-
lowing list summarizes these unique
features, each of which will be dis-
cussed in detail.

¢+ Lines of text as the unit
record—By treating each line of text
as a separate entity, there is no dan-
ger of wrapping your highly-formatted
patent record into a paragraph con-
taining many different kinds of data
including the field tags.

* Rectangular blocks of text—
The ability :0 mark a rectangular
block of text allows the entire block of
characters to be marked, and deleted
as a unit.

¢ Persistent blocks—The persis-
tence of marked blocks allows the
upper left-hand corner of the block to
be marked and then a sequence of
complicated steps completed, to iden-
tify the lower right-hand corner of
the block.

* ZONE (columns of text)—The
use of the ZONE command allows
the patent number field tag “PN -”
to be identified uniquely. This
avoids the problem of falsely identi-
fying a title containing the text
“prePN -" as the beginning of the
patent number field. If a title word
was falsely identified as a field tag,
the macro might mistakenly delete
a rectangular block of text from the
title field.

I will first demonstrate how these
features are used to design the
macro. Following the description of
this sample macro, I'll describe how

differently the corresponding fea-

tures are handled within a word
processor. The following steps are
required to delete the unwanted text
from the patent number field:

1)Locate the patent number field
tag “PN -”

2)Mark the upper left hand corner of
the block of text to be deleted

3)Locate the end of the patent
number field (i.e., locate the next
tagged line and then move up
one line)

4)Mark the lower right-hand corner
of the block of text to be deleted

5)Delete the block of text

These steps define the minimum
needed to recognize the block of text
and delete it from a single patent
record. Using the KEXX macro lan-
guage, these steps could be accom-
plished by the sequence of commands
shown in Figure 2.

As shown later, this sequence of
steps could be repeated automati-
cally for a hundred or a thousand
patent records.

Why would this sequence of steps
be difficult to automate in a word
processor? The difficulty lies in the
four underlying features of an edi-
tor, which are handled completely
differently in a word processor. The
following discussion of each of these
features describes the difference
between the implementation within
an editor and the way corresponding

features are handled within a word
processor.

Lines Of Text As The Unit Record

In this context, a unit record
defines the smallest block of text that
the software tool will treat as a dis-
crete entity. In a word processor, the
unit record is a paragraph. Any word
processor will attempt to wrap text
within the limits of a paragraph,
where a paragraph is defined as text
that exists within either blank lines
or paragraph symbols. For an editor,
the unit record is a line of text. An
editor will not wrap text from one
line to another unless explicitly
instructed to do so.

When editing a downloaded patent
record, the searcher does not want the
accession number field, the inventor
field and the title field to wrap into one
large and difficult to read “paragraph.”
Therefore, when editing a patent
record with a word processor, the first
thing you must do is to add .“hard
returns” or “paragraph symbols” to the
end of every line. Otherwise, any
changes to the text will cause the
entire record to wrap into a large
ungainly mess. Anyone who has ever
attemnpted to edit a downloaded record
in a word processor is familiar with
this phenomenon. In an editor, there is
no need to add these “hard returns.”
Each line of text is treated as a sepa-
rate record. An editor makes no
attempt to wrap the highly-formatted
text into a paragraph.

FIGURE 2
Commands Using KEXX Macro Language

reset biock
zone 16
locate/PN -/
zone t*
clocate :37
mark box
down
do forever
if substr(curfine.3(,1,2) = * ‘ then do
down
end
else do
up
clocate :80
mark box
delete block
leave
end
end

(unmark any existing block)

(limit any search to columns 1 to 6)
(locate the patent number field tag)
(remove the column limitation)

(move the cursor to the starting column)

(mark the upper left hand corner)

(move to the first equivalent)
(repeat for each equivalent)

(test for a field tag)

(if not tagged go to the next line)

(if tagged this ends the patent field)

(mark the lower right hand corner)
(delete the block of text)
(you're finished with this record)

-p

1994 Auaust DATABASE 653

EDIT allows searches for text strings to be

limited to a defined set of columns. This is

especially important when attempting to find

field tags, although it is also useful in many

other applications.

Rectangular Blocks Of Text

In an editor, a rectangular block of
text can be marked. This means that
the rectangle defined by columns 37
to 80 and lines one to five can be
marked. This block of text can then
be manipulated as a unit.

Many word processors can only
identify continuous blocks of text,
starting at any point and including
all the text on every line to the end-
ing point. A block of text beginning
in line one, column 37, and going to
line five, column 80, would include
all the text in lines two through
four. At least one word processor,
Microsoft’s Word for Windows, does
have the capability to select col-
umns of text on the screen by using
the right mouse, however this abil-
ity is less versatile and is disabled
when recording a macro.

In addition, many word processors
include the capability to format text
into columns. I'd like to emphasize
that “formatting text into a column”
is quite different from “marking a col-
umn of text.” In recognizing the block
of text to be deleted, the text is not
being reformatted at all; instead a
vertical slice of text is being marked
and then manipulated. Many word
processors lack the ability to mark or
manipulate a vertical slice of text.

Persistent Blocks

KEDIT has what is known as per-
sistent blocks. Once a block is
marked, it will exist until it is explic-
itly unmarked. Any number of other
steps can be executed between the
time the block is marked and the
time that the block is manipulated.
This feature provides great flexibility
in creating macros. Likewise, one cor-
ner of the block could be marked, and
then 50 other steps could be exe-
cuted, and finally the other corner of

the block could be marked. As shown
in the above minimum version of the
macro, a series of steps must be
processed between the time the
upper left-hand corner is marked and
the time the lower right-hand corner
is marked.

Word processors require that a
marked block be manipulated imme-
diately. Once a block is marked, a
word processor assumes that any sub-
sequent commands should operate on
the marked block. The boundaries of
the block must also be marked as one
continuous action. The corners of the
block must be marked one after
another without any intervening
actions. Furthermore, many word
processors unmark blocks automati-
cally whenever certain actions are
taken. For example, hitting the <page
down> key will often unmark (dese-
lect) a block.

ZONE (Columns Of Text)

KEDIT allows searches for text
strings to be limited to a defined set
of columns. This is especially impor-
tant when attempting to find field
tags, although it is also useful in
many other applications. For exam-
ple, one might think that the patent
number field tag “PN -" would be a
unique identifier string. However, if
you do not limit the search for this
tag to columns 1 to 5, you will also
find lines that contain the text
string “prePN -,” which occurs in
many Derwent titles. By using the
zone feature, macros can uniquely
identify lines of text that begin with
any field tag. As another example, it
is possible to identify quickly, all
United States equivalents in a
downloaded file by using the ZONE
feature combined with KEDIT's
selective editing feature, the ALL
command (Figure 3).

‘zone 7 8
‘allius/

It would also be possible to create a
list of all U.S. or European equiva-
lents by including Boolean logic in

‘your ALL statement, for example,

ail JUs! 1 /EPL.

It is also noteworthy that KEDIT can
have both an “active zone” and a
“marked block of text” at the same time.
Since these two features are imple-
mented separately, you can mark a
block or one corner of a block while a
zone is simultaneously limiting any text
searches to a different column of text.

Word processors do not generally
include any equivalent of the zone fea-
ture. Indeed, with today’s emphasis on
variable fonts, the concept of a “col-
umn” becomes almost meaningless.
Depending on the font size, a character
may appear on line five, column 30, or
wrap to line six, column five. Without
the ability to limit a text search to the
first few columns, it is difficult to iden-
tify uniquely, the lines that begin
with the accession number field-tag,
“AN -.” for example, and avoid finding
lines containing phrases such as
“GREATER THAN -25 DEGREES.”
On some word processors, it is possible
to find text selectively, that begins in
the first column by locating a para-
graph symbol followed by the desired
text. For example, in Microsoft's Word
for Windows it is possible to search for
the string, “*pPN -” and thereby locate
a line tagged with “PN -” This is a far
less elegant method and would only
work for text that begins in column

one. I often need the ability tolimit my

search to other specific columns, as in
the earlier example of identifying all
the U.S. patents in a listing of multiple
equivalents.

A COMPLETE WORKING
MACRO (PARTIALLY IN
PSEUDO-CODE)

The previously shown minimum
version of the macro will execute
exactly once. In a finished version, this
subset of commands is embedded in a
loop that will execute once for each
patent record. Furthermore, the work-
ing version of this macro has been
extended to both highlight and display
the block of text and wait for approval
before deleting each block. The user
may view each highlighted block

66 DATABASE August 1994

FIGURE 3
U.S. Equivalents Identified by KEDIT

PN - US5118835-A 92.06.02 (9225) 28p

PN - US5118325-A 92.06.02 (9225) 6p

PN - US5116522-A 92.05.26 (9224) 6p

PN - USS5110963-A 92.05.05 (9221) 3p
US5118875-A 92.06.02 (9225) 16p

PN - USS5108462-A 92.04.28 (9220) Sp

PN - US5102427-A 92.04.07 (9217) 6p

PN - USS5099046-A 92.03.24 (9215)

PN - USS5095171-A 92.03.10 (9213)

PN - US5095170-A 92.03.10 (9213)

C07C-381/00
Cl0M-133/16
Cl0M-145/14

C07C-037/20

FIGURE 4
A Complete Working Macro

-or-

LI Y A

'set autosave of f'
(--- set any system parameters ---)

'reset block’
'zone 1 6°'
'nomsg locate/PN - /°

last ---)
‘zone 1 +'
‘clocate :37°
‘mark box’
‘down*
do forever

*down'
end
else do
"up*
‘clocate :80°
'mark box'

'delete block’
leave
end
end

t'ttt.'t"tt.tttl."'...t""l"'.'t".QQ'.ﬁtttt*t"'.t.t'."i'ﬁ
pDelete page-numbers, language and classification information

from Derwent patent equivalents (downloaded from CRBIT)
Note: This macro highlights the text just BEFORE it is deleted!

Hit ENTER once to highlight the extra data
Hit ENTER again to delete the highlighted data

EXIT the macro without deleting the highlighted data

(--- repeat the following section of commands for each patent abstract ---)

(--- test if this is the last patent record and exit the loop if it is the

if substr(curline.3(),1,2) = ' ' then do

{ --- highlight and display the marked block of data ---)
(--- ask the user to verify the deleticn of this block of data ---)
{ --- if the user does not verify the deletion then exit this macro

(--- go to the next patent abstract ---)

{ --- reset system parameters and "clean up"

after the macro ---)

before it is deleted. If the macro falsely
identifies an incorrect block of text, the
user may optionally exit the macro
without deleting the marked text
(Figure 4).

Caution is always advised when
learning a powerful tool such as
KEDIT. Preferably, you should always
test your macros on duplicate copies of
your downloaded files. When first test-
ing a macro, make a sample file that
includes new records, ten-year-old
records and twenty-year-old records.
Remember that the format for patent

records has changed significantly over
the years, and a macro that functions
perfectly on new records may have
strange effects on records that are
twenty-years old and have slightly dif-
ferent data structures. As one obvious
example, a macro that tests for an
author field will not function properly
on early Derwent records that do not
contain an author field.

A POWER TOOL
This article has examined a few of
the unique features of the editor

KEDIT, which make this a powerful
tool for patent searchers. Of course,
KEDIT can be used on any type of
ASCII file, including data down-
loaded from chemical or business
databases. Although I have empha-
sized the strengths of KEDIT, I'd
like to mention a few of its “weak-
nesses.” KEDIT lacks the type of
“keystroke record” feature that is
used by many word processors to
create macros. KEDIT also does not
include any type of spelling checker,
and makes no attempt at sophisti-
cated formatting, such as headers or
footers. In short, KEDIT lacks some
important word processing features
that would be used to produce a
final, professional looking docu-
ment. KEDIT is a superb editor, and
was never designed to be a word
processor. I use KEDIT whenever I
want to evaluate, or selectively edit
a downloaded file. To produce a
final report, I import this evaluated
and edited file into a word proces-
sor. For the patent searcher, the
combination of KEDIT plus a mod-
ern word processor gives the best of
both worlds.

ACKNOWLEDGEMENT

My thanks to Dr. Thomas E. Wolff
for reviewing this manuscript and
for offering several helpful sugges-
tions. Dr. Wolff wrote on KEDIT for
post-processing searches in the June
1992 issue of DATABASE.

Sandra S. Unger is a Staff
Chemist in the Information Research
and Analysis group with Exxon
Research & Engineering. She received

her B.S. (Chemistry) from Michigan -

State University in 1974 and Ph.D.
(Organometallic Chemistry) from
Michigan State University in 1979.
She also received a Masters in Com-
puter Science from the New Jersey
Institute of Technology in 1991. Ske
has been with Exxon since 1979 and
in the Information Research and
Analysis group since 1986, providing
chemical and patent studies for
clients throughout Exxon.
Communications to the author should
be addressed to Sandra S. Unger, Exxon
Research and Engineering, P.O. Box
121, Linden, N.J 07036; 908]474-6605;
Internet—SandralUnger@delphi.com.

1994 August DATABASE 67

