401

W]Jy)()z Shotild

)OU

script commands have been available for many
years, starting with the first version of STN Express,
which used script language for login scripts that
accessed STN and other online database systems. Over
the years, STN International has introduced other
applications of script language, most notably to gener-
ate Derwent World Patents Index (WPI) strategies, as
well as scripted command files from lists of accession,
patent, or CAS Registry number identifiers or SciFinder
Answer Keys (see Figure 1 on page 41). However, in
most of these cases, the functionality and power of the
script language lies hidden from the user. Even for WPI
search strategies, most users undoubtedly edit the
scripted command files for content and search accu-
racy, without recognizing the broader potential of the
arcane-looking script language.

Searchers should look at the script language in a new
light. The command language is easy enough to under-
stand and incorporate into everyday search work. Oth-
ers have published articles and presented talks over the
years describing aspects of script language. Chemical
Abstracts Service presented an e-seminar (1); FIZ Karl-
sruhe provides helpful documentation on reducing
online time and automating searches (2, 3). Litscher
and Neuhaus have actively published on STN Express
scripts and worked to develop a user community (4-6).
However, much of the emphasis on these scripted com-
mand files has focused on processing data from exter-

SEARCHER: The Magazine for Database Professionals

~\

nal files in conjunction with online searching. Sample
scripts focus narrowly on such areas as selecting spe-
cific answers [rom an answer sel, saving specific answer
sets, orremembering E-numbers after a SELECT com-
mand. What has been missing is a good explanation on
“what is in it for me” — why STN searchers should use
STN script commands regularly. The reasons are
straightforward: to save online time and costs, to
reduce errors, and to improve results by planning
ahead and automating repetitive tasks.

Simple Command Files

The STN Express Command Window (see Figure 2
on page 41) is frequently referred to as a “type-ahead”
buffer, because searchers often compose search strate-
gies before hourly connect time charges take effect,
either before starting search sessions or before enter-
ing expensive target databases. The strategies so com-
posed may be considered “simple” command files (see
Table 1 on page 42). These simple command files just
compile search commands exactly as a searcher would
enter them at a system prompt and contain no pro-
gramming logic. The files can be pasted into the Com-
mand Window and run continuously one after the
other, or be run line-by-line, which gives the searcher
the opportunity to edit the strategy at any time in
response to results returned as the search progresses.

Care

ScriptConmmands

by Thomas E WOIﬂ: Figure 1: Command File Functions on STN Express®
Wolff Information Consulting LLC

Command files may be prepared in advance for one-
time use during a search session or become part of a
library for repeated use. Searchers often create and save
“search hedges” or sets of search terms on concepts
used frequently. These hedges might include sets of
compounds, product lines, companies, authors, patent
assignees, journals, or terms covering other search top-
ics. Running these mini-search strategies can reduce
the expense of saving answer sets, as long as recreating
the answer sets online does not exceed the cost of stor-
ing the answer sets. Possibly the best use of command
files is for running periodic update searches, also Figure 2: Running Command Files on STN Express®
known as SDIs or alerts. Saved command files for
update searches usually only need to have the update Gimpls — 5T Cammand Window (CU1-W), 1un Bree-biy-ing or mistigle ines
codes changed to reflect the most recent search period
of interest.

The biggest issue with simple command files is the
necessity to anticipate search statement L-numbers
accurately in advance. While relatively easy to develop
a search strategy for the beginning of a search session,
since the first answer set is always L1, simple command
files would need editing to account for their invocation
in the middle of a search session, especially if that ses-
sion did not go as anticipated and the last L-number
prior to invoking the simple command file differed
from what the searcher expected when composing the
command file. Changing L-numbers throughout com-
mand files with many search statements and complicated figure 2

Figure 1

woww.infotoday. com/searcher September 2007 141

Why You Should Care About STN Script Commands

Table 1: Examples of Simple and Scripted Command Files

Simple Scripted

file reg =>file reg

act goodrns/a =>act goodrns/a \>_linel
file hcaplus =>file hcaplus

sl =>s5 _linel \>_line2

s [1/p (notl) 11/dp

=>s _linel/p (notl) _linel/dp \>_line3

s 12 (s) catal?

=>s _line2 (s) catal? \>_line4

s13 and 14

=>s _line3 and _lined \>_line5

save |5 catal/a

=>save _lineb catal/a

dis I5 tot

=>dis _lineb tot

file stng;d his

=>file stng;d his

structure can prove an irksome chore, fraught with
potential for making mistakes.

Scripted Command Files

Applying STN Script language to simple command
files both overcomes the disadvantage of having to
know L-numbers in advance and enhances the useful-
ness of the command files. The right column of Table 1
(above) shows a scripted command file with no added
functionality other than variables for L-number sets.
While you can prepare scripted command files in any
text editor, such as STN Edit, included with STN
Express, Microsoft Notepad orWordPad, I recommend
using a program such as KEDIT for Windows (7, 8), a
program produced by the Mansfield Software Group
and available for downloading for $129 from http://
www.kedit.com. It has a macro language capability to

ease the task of converting fixed to variable L-numbers.
STN Express also has a valuable facility to check com-
mand files before trying to run them online. In the STN
Online and Results screen, navigate to Query ... Check
Command File (figures 1 and 2).

The features comparison of Table 2 below summa-
rizes the implications of using scripted command
files. The most evident feature of the scripted com-
mand file is the use of the primary command prompt,
=>, at the beginning of each STN messenger com-
mand line. You need to use this prompt to synchro-
nize submissions from the script processor with
responses from the online host. Note that a scripted
command file does not run in the usual way via the
STN Command Window; instead it “uploads” to the
STN session via the Query ... Run Command File
(CTRL-R) function (see Figure 2). The scripted com-
mand file then runs automatically from top to bottom,
except for user input or intervention or for program-
ming logic in the script file itself.

The full-featured script language offers character
strings and numbers, operators, variables, conditional
logic, user interaction options, file commands, and
script language instructions, as explained in the STN
Script Language Basics sidebar on page 43. The vari-
ables are particularly powerful. In Table 1, I only show
the search statement line variables, which begin with
the underscore, _, character, contain 1-12 alphanu-
meric characters, and are assigned using the \> oper-
ator. These are then referenced in place of L-numbers
in subsequent search statements. Each STN Messen-
ger command that generates an L-number, including
activate, query, search, sort, and transfer, can be
assigned a variable. In the case of commands that gen-
erate more than one L-number, such as transfer, the
line variable is assigned to the last L-number gener-
ated. Any valid variable, such as _catal or _patents, can

(Text continued on page 46)

Table 2: Features Comparison of Simple and Scripted Command Files

Feature

Simple

Script

Prompts

MNone — looks like regular online session

== or : (STN) 7 (Dialog, Questel)

User control

line-by-line and edit lines prior to submission

Paste into STN Command Window (Ctrl-W); run

Upload (Ctrl-R); runs automatically; include com-
mands for user input

Programming logic None Full featured with functions, variables, operators,
etc.

Variables None User-provided or results-based variables used in
place of defined names and numbers

L-numbers Must be accurate or requires editing Programming flexibility by using variables for L-

during session numbers and corresponding numbers of answers
(STN only)
421 SEARCHER: The Magazine for Database Professionals

Why You Should Care About STN Script Commands

STN Script Language Basics

A script is a text file that uses features of the STN Express Script
language to carry out search session actions, such as invoking STN Mes-
senger commands (1), working with computer files, and implementing
strategic decisions based on the results of the search or concurrent input
by the searcher. The most common script files are the login scripts pro-
vided with STN Express for access to several online hosts including STN.
These login scripts are undoubtedly the reason script language was devel-
oped, but seldom require any user attention. The login scripts are not
particularly helpful in understanding script language for developing use-
ful scripted command files for regular online searching.

You can prepare script files using STN Edit, available via the menu
item Query ... Prepare Command File, or with any text editor, such as
Microsoft Notepad or WordPad. KEDIT for Windows has a powerful macro
language and works well for preparing script files and post-processing
session capture files (2, 3). Microsoft Word will work, but | do not rec-
ommend it because of potential, residual nontext characters that STN
Express does not accept, even if you save files as plain text (*.txt) with
MS-DOS encoding. STN Express has a very useful function for check-
ing script files in advance, activated by Query ... Check Command File.

Script language has many of the same kinds of components found in
other programming languages, such as character strings, numbers, vari-
ables, operators and conditions, and functions for working with computer
files, communications devices, and online hosts (4). Note that all content
in script files, including commands, are not case-sensitive; uppercase is
used below for clarity only. Here are highlights of Script language compo-
nents most useful for user scripts; functions specific for login scripts are
not included:

System Commands. STN system primary and secondary prompts, =>,
:, are used before STN Messenger command statements in the script.
Though the system does not recognize all script language variations, it
does recognize Dialog and Questel question mark prompts (5).

Character Strings, Numbers, File Names, and Labels. Text data
appears enclosed in double quotation marks with strings up to 140 char-
acters with 80 characters per line. The backslash character, \, allows
the user to continue long strings on new lines. Numbers are either pos-
itive integers or zero; negative integers are created by subtracting from
zero. Computer file names are enclosed in angle brackets, < >. State-
ment labels begin with the at sign, @, and are used in conjunction with
programming logic.

Variables. Variables are places to store information such as numerical
values, text strings, file names, or the results of search statements. They
begin with an underscore character, _, contain 1-12 alphanumeric char-

Mastering STN Commands [http://www.cas.org/training/stncommands].

acters, and are not case-sensitive. Special variables include the search
statement or L-number variable, which is assigned to the results of a search
statement with the special \> operator. A variable could be assigned to any
STN Messenger command that generates an L-number, including activate,
analyze, fsearch, fsort, query, search, sort, and transfer. The assigned vari-
able would correspond to the last L-number in the case of commands that
generate more than one L-number. The number of hits in a search state-
ment is retrieved using the # operator. For example, the L-number created
by the following search command is stored in the variable called _catal
and the number answers in the L-numbered answer set called #_catal:
=> s catal? and titanium \> _catal

Useful predefined variables include _$LNUM and _$LANS for the
most recent L-number and the number of answers in the most recent L-
number set, and _$ENUM for the most current (largest) E-number.

Operators. Script language has all the usual operators: arithmetic,
comparative (equality, greater than, less than, includes), string concate-
nation, and Boolean.

Conditional Logic. In IF/THEN/ELSE programming, THEN is optional
and ELSE provides an alternative set of instructions. The BEGIN ... END
functions can follow the IF/THEN/ELSE to execute a series of program-
ming statements in a block.

User Interaction. The ECHO command displays the text to the user and
is captured in the transcript file; by adding [NOCR] to the statement, you
can eliminate the carriage return, which would add a blank line in the tran-
script. The GET command opens a blank user input window to allow spec-
ification of text for inclusion in an STN Messenger command. The EDIT
operator, also \!, works similarly, but the user input window is preloaded
with data that the user can modify before the STN Messenger command is
sent to the system. The USER command temporarily transfers control to
the user; script processing continues when the user hits the END key.

File Commands. These include CAPTURE, OPEN, CLOSE, DELETE
files; EXEC (execute) another file, e.g., a secondary script; or UPLOAD,
used for structures files. The READ and WRITE commands are used to
read from and write to a single line in the OPEN file.

Script Language Instructions. These include EXIT for leaving the
script immediately, even if not at the end of the script file; GOSUB for
invoking a subroutine and GOTO for directing the script to a new loca-
tion as designated by a label, e.g., @targetline; ONEXIT for invoking a
block of statements just prior to leaving the script; PAGE for inserting a
page break in the transcript; RETURN for sending the processing back
just after the GOSUB statement. Comments are inserted with the * char-
acters; all text after * is ignored in processing.

“KEDIT: A Powerful Text Editor for Post-Processing Searches” (Thomas E. Wolff, DATABASE, June 1992, pp. 43-49 [http://tinyurl.com/28r7vt].
“Why Patent Searchers (And Others) Need KEDIT When They Already Have a Word Processor; Or, Post-Processing At the Power Level” (Sandra Unger, DATA-

BASE, August 1994, pp. 63-67 [http://tinyurl.com/2xslyk].

STN Express User Guide, http://www.cas.org/support/stnexp/, Appendix: STN Express Script Language.

STN Express recognizes the question mark system prompts for Dialog and Questel. Most Script language features work for these non-STN services, including
user interaction commands, operators, and programming language and logic. Unfortunately, line number and answer count variables do not work. One might
still gain value by using scripted command files with substantial inclusion of ECHO, EDIT, and GET commands for user input.

www.infotoday. com/searcher

September 2007 143

Why You Should Care About STN Script Commands

Figure 3: Transcript of “Multifile with Select”

SCRIPT: MULTIFILE WITH SELECT

FILE REGISTRY' ENTERED

L4t

FRLE RAPRA' ENTERED

3 § (P003-07-0 OR 25085-53-4 OR 26063-72-B)YyRN

[—

La2 34 5 PROPYLENE HOMOPOLYMER/CT AND —
PIDT AND UP»2007030% roxt
SEL LAZ PN 1- ; st | 5]
[——
FILE HCAPLUS ENTERED eE——— =
L43 42 S EXR-EINZ : B seviend
Las 20 5 LA1P AND PTOT AND UP>Z00T0301
L45 62 5143044) =)
DIS L45 BiB AR TOT
Figure 3

461

{Text continued from page 42)

be used for line assignments and variables in search
statements. When creating scripted command files,
the convention used by STN Express in creating WPI
strategies helps keep track of search logic: set L-num-
bers are replaced with variables in the form _lineNN.
For example, L15 in the simple command file would
become variable _linel5 in the scripted command file.

The script processor creates a new answer count vari-

able from each line assignment. For example, line
assignments _line25 and _catal have corresponding
answer count variables accessible in script language
as #_line25 and #_catal. These line assignments and
answer count variables work exclusively on STN,
whereas most of the remaining script language fea-
tures work on Dialog and Questel as well.

The scripted file in Table 1 provides a good oppor-
tunity to explore some of the script language features
available through straightforward editing. The number
of answers from the statement assigned to variable

line5 may be larger or smaller than the user would
want to save long-term or to display the total set in the
default format. To ask the user for some input on the
matter, replace the save and display lines with the fol-
lowing lines:

if (# lineb > 0)

begin

echo “What name do you want to use to
line5 \

(blank response will void save command):
“NOCR

gel _savename

save answer sel

SEARCHER: The Magazine for Database Professionals

W

if (_savename <> “”) then =>save line5
_savename

echo “Enter display format: “ NOCR

get _displayformat

=>dis _line5 _displayformat tot

end

The first IF statement will only call the following
BEGIN ... END block if the number of answers for set
_line5 is greater than zero. If so, the user will be asked,
via the ECHO command and a “Enter User Data” query
box, to provide a name to the saved set (variable _save-
name), which the GET command will retrieve. If the
variable is blank, the save command will not be imple-
mented. Note that the first ECHO command was too
long for this page and has a continuation character
backslash (\). In this case, no provision is made for
input of a valid saved set name (1-12 characters fol-
lowed by /A), but one could probably elaborate the
script to account for this. Instead, if an invalid name is
entered, STN Messenger will prompt for a valid name
even while this script is running. The same is true for
the display format — although you probably could not
write a script sophisticated enough to accept only valid
display formats because there are so many. This script
could also ask the user for the number of answers to
display, instead of always printing them all (tot stands
for total). The NOCR commands after each ECHO
statement avoid having an extra new line (“carriage
control”) inserted in the transcript.

More Script Examples

Here are some additional examples that take advan-
tage of script language features to facilitate multifile
searching and answer displays.

The following script selects patent numbers from
one file and then searches them in another. The result-
ing transcript appears in Figure 3 above.

echo “Script: Multifile with Select”

=>file reg

=>s 9003-07-0 or 25085-53-4

\>_linel

=>file rapra

=>s propylene homopolymer/ct and p/dt and

up>20070301 \>_line2

=>sel _line2 pn 1-

=>file hcaplus

=>s el-el0 \!'\>_line3 * user edits this line*

=>s_linel/p and p/dtand up>20070301 \>_line4

=>s _line3-_line4 \>_line5

if (# line5 > 0) and (#_lineb < 100) then =>dis
line5 bib ab tot

or 26063-22-9

else =>dis _lineb scan ti sc st hitrn

=>file stng;d his full

This script is designed to search for polypropylene
references added to the RAPRA and HCAPLUS data-
bases after March 1, 2007. It contains five L-number
sets, which became L41-1L45 in the actual transcript.
Patent numbers from the RAPRA records were assigned
E209-E312. The user sees an “Enter User Data” query
box pre-filled with the text e1-e10 to help guide the user
as to what is being asked for. Once the user corrects this
data and clicks on “OK,” the script will continue to the
combined set of new records in 145. Since there were
fewer than 100 records in set L45, all were displayed in
BIB AB format according to the IF statement. If there
were > 100 records, one answer would be displayed in
scan ti sc st hitrn format.

An alternative to the user-edited “s e1-e10” state-
ment above appears in the getenums script described
as “Remembering the first and last E-number after
SELECT command” (9). This script was written to
automatically capture assigned E-numbers. It pro-
vides an excellent example of both the power and
shortcomings of STN Script language. The getenums
script is modular, can be called by an EXEC com-
mand from any other script, and carries out the fol-
lowing steps:

* Asks the user for the full SELECT statement (L-num-
ber, terms and answer numbers to select from), e.g.
sel 112 pn apps 1

e (Carries out SELECT in current file

» Asks the user for the name of the target database in
which to search the selected E-numbers

* Asks the user for the name of the original transcript
file

* Searches the assigned E-numbers and assigns the fi-
nal L-number as variable _lgetenums

While the getenums script was written to simplify
the E-number search process, it actually requires
more user intervention than the simpler script above
asaresult of deficiencies in STN Script language. The
simple facility to recall and process the most recent
response from an STN session does not exist. In this
case, capturing E-number assignments after the
SELECT statement requires writing the assignment
statement to a new temporary capture file (called
seltemp.trn) and parsing the E-numbers from the
first line of that temporary file. You will need this
temporary transcript because the READ file com-
mand starts at the beginning of the open file and
cannot be directed to the middle of a file or to an
active transcript file. Conceptually, the script should
be able to close the temporary capture file and sim-

www.infotoday. com/searcher

Why You Should Care About STN Script Commands

ply continue capturing the session in the original
transcript file. However, STN Script language has no
means for retaining the name of the original tran-
script file before redirecting the transcript to the
temporary transcript file. Therefore, the getenums
script must ask the user for the name of the original
transcript file. Since the script needs to ask the user
for such “obvious” matters, the user is probably just
as well off using the EDIT command to verify the E-
numbers manually.

Searches frequently involve multiple files whose
results need to be transferred into one target file for
further processing, including duplicate elimination.
The following script assumes that the user wants to
retrieve patent numbers retrieved from three major
files— HCAPLUS, IFICDB and ENCOMPPAT — and to
combine them for entry into the Derwent subscriber
WPIX file. This script could be part of a very long script
covering all four online databases. However, it is eas-
ier to keep the script files for each database separate
in order to avoid having to edit many _line-numbers
due to changes earlier in the script file. In other words,
try to keep scripted command files modular to sim-
plify their maintenance.

echo“Script: Bringing Together Multifile Results”
=>file wpix

* User will be asked to edit each TRA line below
=>trall4 pn.b apps.b / pnapps \! \>_linel * from
HCAPLUS

=>ra 130 pn apps \!' \>_line2 * from IFICDB
=>tral47 os / an \! \>_line3 * from ENCOMPPAT
* don't use linel-_line3 shortcut since L-num-
ber are not consecutive in this case

=>s _linel or _line2 or _line3 \>_line4

The user is asked to verify each transfer command
statement, because L-numbers could have changed
since the script was written. Note that ranging linel-

line3 will not work in this case because each trans-
fer statement produces multiple L-numbers. The cor-
rect method is to use OR logic for each separate
line-number.

You can write scripts in many ways to display
answers in predetermined or user-requested formats.
This script displays all answers in SCAN format with-
out having to ask the user to instruct the system about
how many more answers should be displayed after the
first one.

echo “Script: Display Scan All Answers”
if (# lineb =1) =>dis _line5 scan ti sc st hitrn
else if (# line5>1)

begin

September 2007

147

Why You Should Care About STN Script Commands

481

if (# lineb > 500)
begin
echo “Answer set _line5 contains
#_line5 answers.”
echo “Do you want to display all in
SCAN format? Y/(N):" NOCR
get _reply
if (substr(_reply,1,1) <> “y”) then
goto @noscan
end
_numanswers = #_line5 - 1
=>dis _line5 scan
:_numanswers
@noscan
end

In the script above, an answer set of one record will
automatically be printed in SCAN format. For answer
sets with more answers, the user is asked to confirm
that the whole set should be displayed in the SCAN
format. Note the use of the SUBSTR (substring) com-
mand “substr(_reply,1,1)” that returns the one char-
acter of the _reply variable starting at the first posi-
tion. Aslong as the response begins with the letter “y,”
all answers in the set will display in SCAN format. Oth-
erwise the script will skip to the @noscan label and
then exit at the END command. If double-checking
with the user is considered unnecessary, the script
could be made to display the full answer in SCAN for-
mat automatically.

Should You or Shouldn’t You?

Scripted command files became aregular feature of
my online searching once I discovered STN Script lan-
guage and learned its potential and intricacies. I use
scripted command files regularly whenever I have to
prepare complicated search strategies in advance or
reuse strategies from previous searches. For searches
involving multiple databases, I create simple command
files for each source database and convert them with
KEDIT for Windows to scripted command files. 1 run
the scripted command file for each database, one after
another, without concern about what the last L-num-
ber was in the previous file. Similarly, I convert search
histories into scripted command files with KEDIT for
Windows and automatically convert the original L-
numbers into self-consistent variables that become
actual L-numbers as the search proceeds. Over the
years, | have developed a library of current awareness
search strategies and search hedges that support a
diverse customer community. Rerunning current
awareness strategies generally involves simply chang-
ing update codes.

SEARCHER: The Magazine for Database Professionals

So why should you care about STN Script Com-
mands? To streamline your search processes and save
time and money. Consider joining the community of
STN Script Language users through the references and
Web sites provided with this paper. We can all learn
from each other. .

References

1 “STN: Automating Your Search,” CAS e-Seminar, Aug. 31, 2004
[http:/ftinyurl.com/2hzcdal.

2 "Reduce Online Time with Command Files and Scripts”
[http://www.stn-international.de/stninterfaces/stnexpress/com-
mandf.html].

3 “MNutzen Sie SCRIPTE um ihre Recherchen zu organisieren?” C.-D.
Siems [http://iwww.stn-international.de/archive/presentations/com
info04/Bern2004_STN_Scripts. pdfl.

4 “InfoLit. STN Express Scripts” [http:/www.infolit.ch/177.html].

w

“STN Express scripts for citation analysis in SCISEARCH and CAplus,”
C. Neuhaus and A. Litscher [http://www.psh.ethz.ch/pecple/neu
haus/stn].

6 “Using scripts to streamline citation analysis on STN International,”
C. Neuhaus, A. Litscher, and H.-D. Daniel, Scientometrics, vol. 71,
no. 1, 2006, pp. 145-150.

7 “KEDIT: A Powerful Text Editor for Post-Processing Searches,” Thomas
E. Wolff, DATABASE, June 1992, pp. 43-49 [http:/itinyurl.com/
28rivt].

8 “Why Patent Searchers (And Others) Need KEDIT When They Already
Have a Word Processor; Or, Post-Processing At the Power Level,”
Sandra Unger, DATABASE, August 1994, pp. 63-67 [http:/tinyurl.com/
2xslykl.

9 “Remembering the first and last E-Number after SELECT command™
[http:/fwww.infolit.ch/258.html].

Acknowledgments

This paper is based on the presentation “Why You Should Care about
STN Script Commands” presented at the Patent Information Users
Group (PIUG) 2007 Annual Conference (Costa Mesa, Calif., May 5-10,
2007). The author would like to acknowledge Brian Sweet and Steve
Piehler of the Chemical Abstracts Service for online time and guidance
in preparation of this paper; Claus-Dieter Siems (FIZ Karlsruhe) and
Andreas Litscher (Swiss representative to FIZ Karlsruhe) for feedback;

and Ruth Umfleet (Celanese) for wonderful input and editing.

Thomas E. Wolff formed Wolff Information Consulting LLC in 2006
to provide technical and patent information services on a contract basis.
He has a B.S. in chemistry from the Massachusetts Institute of Tech-
nology and a Ph.D. from Stanford University in bicinorganic chemistry.

He is also a registered patent agent.

